The effect of timing of antibiotic delivery on infection rates related to open limb fractures: a systematic review

Michael R Whitehouse,^{1,2} Catriona McDaid,³ Michael B Kelly,² Christopher G Moran,⁴ Matthew I Costa⁵

ABSTRACT

 Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ emermed-2016-205900).

¹Musculoskeletal Research Unit. School of Clinical Sciences, University of Bristol, Bristol, UK ²Department of Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, UK ³York Trials Unit, Department of Health Sciences, University of York, York, UK ⁴Queens Medical Centre, Nottingham University Hospitals, Nottingham, UK ⁵Oxford Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK

Correspondence to

Michael R Whitehouse, Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, 1st Floor Learning and Research Building, Southmead Hospital, Bristol BS10 5NB, UK; micheal.whitehouse@bristol. ac.uk

MRW and CMcD contributed equally.

Received 21 March 2016 Accepted 26 August 2016 Published Online First 15 September 2016

Objective To examine whether the timing of delivery of intravenous antibiotics following open limb fractures has an effect on deep infection rates and other outcomes.

Design We published an a priori study protocol in PROSPERO. Our search strategy combined terms for antibiotics, timing of administration and fractures. Two independent reviewers screened, selected, assessed quality and extracted data from identified studies. Data sources We searched five electronic databases with no limits and performed grey literature searches. Eligibility criteria for selecting studies Randomised and non-randomised controlled studies, prospective and retrospective observational studies in which the effect of the timing of delivery of antibiotics on the outcome of deep infection in open fractures was considered were included.

Results Eight studies were included according to the above criteria. There were no randomised or nonrandomised controlled trials. None of the included studies provided data on patient reported or healthrelated quality of life. The overall deep infection rate ranged from 5% to 17.5%. All of the studies were at substantial risk of bias. One study reported a reduced infection rate with the delivery of antibiotics within 66 min of injury and seven studies reporting no effect. **Conclusions** Sufficiently robust evidence is not available currently to determine whether the timing of delivery of intravenous antibiotics has an effect on the risk of deep infection or other outcomes following open limb fractures. There is therefore a need for a

randomised controlled trial in this area before policy changes should be instigated.

Trial registration number PROSPERO (CRD42015016729).

INTRODUCTION

An open fracture is a break of a bone that communicates with the environment through a breach in the skin. The annual incidence of open long bone fractures is 11.5 per 100 000 persons per year and >70% involve the lower limb.¹² When an open fracture occurs, the barrier provided by the skin is lost, leading to an increased risk of infection.

Open fractures are most commonly graded according to the Gustilo and Andersen classification.^{3 4} This is applied at the time of surgery and uses a 1-3 scale according to the size of the wound. Grade III fractures are further divided according to the complexity of reconstruction needed. The risk of infection is 0%-7% for grade I, 0%-11% for grade II, 2%-36% for grade III and up to 44% for the grade IIIC subtype.³⁻¹⁵ Infection rates of 27% following grade III fractures are typical even in contemporary specialist centres.¹⁶ The consequences of developing an infection are significant, leading to prolonged pain, decreased function, the need for prolonged antibiotics and further surgical interventions or amputation. The associated healthcare costs are £105 000 if the limb can be salvaged and £320 000+ if amputation is required. This is a fraction of the subsequent personal and societal cost.17

Current national standards of care typically state that antibiotics should be given as soon as possible after an open fracture occurs¹⁸ but in most cases, antibiotics are not given until the patient arrives in hospital meaning there can be a substantial delay between injuries and receiving antibiotics. There is some evidence that if antibiotics can be delivered within 66 min of injury, the subsequent deep infection rate may be decreased.⁶ Delivery of antibiotics by prehospital providers or clinicians reduces the time to delivery of antibiotics in this cohort and the diagnostic accuracy in this setting is >95%²

There is currently no definitive trial or systematic review in this area. The aim of this systematic review was to assess whether the timing of delivery of intravenous antibiotics in patients following open limb fractures had an effect on the outcomes of treatment including the incidence of deep infection, patient reported outcomes and health-related quality of life.

METHODS

A protocol for the systematic review was developed and registered with PROSPERO (international prospective register of systematic reviews; registration number CRD42015016729) prior to commencing the review.

Search strategy

An information specialist searched the following databases from 1980 to 17 February 2015: Medical Literature Analysis and Retrieval System Online (MEDLINE) and MEDLINE In-Process; Cochrane Central Register of Controlled Trials; Excerpta Medica database; Conference Proceedings Citation Index-Science; Science Citation Index Expanded; Clinical Trials.gov and WHO International Clinical Trials Registry Platform.

The base search strategy was constructed using MEDLINE and then adapted to the other resources searched. Online supplementary appendix 1

provides the search strategy used for MEDLINE. The search included terms for the following components: antibiotics AND timing of administration AND fractures. No language limits were used. An initial experiment was carried out to ascertain the usefulness of using terms for the names of individual antibiotics. It was determined that no additional useful material was likely to be gained and therefore the final strategy was based on a comprehensive use of index terms and the use of general terms for antibiotics.

The results of all searches were imported into Endnote XVII (Thomson Reuters, California, USA) bibliographic software and deduplicated. Two authors (MRW and CMcD) screened the bibliographic references in Endnote based on the review eligibility criteria. The full texts of any potentially relevant citations were ordered and independently screened. Disagreements were resolved through discussion. Where there were papers related to the same cohort the most comprehensive paper was included.

Study selection

Studies were assessed for eligibility against the following criteria:

Population: people of any age who have an open limb fracture of any severity.

Intervention: studies investigating timing of administration of intravenous antibiotics given prophylactically, including studies comparing prehospital antibiotic administration to administration in the ED.

Comparator: prophylactic intravenous antibiotics provided at a different time. Studies comparing different antibiotics or other aspects of regimen were excluded.

Outcome: infection or deep infection rates, patient function, quality of life (using standardised patient reported outcome measures), fracture union, amputation, mortality and indicators of infection including unscheduled operative procedures, number of operative procedures, need for further intravenous antibiotics and number and type of adverse events and serious adverse events.

The primary outcome of interest was deep infection associated with the open fracture wound. Given the exploratory nature of the review, the definition of deep infection associated with open fracture wound, used by individual studies, was accepted.

Study design: randomised controlled trials (RCTs) were eligible for inclusion. In the absence of this study design, non-randomised controlled studies and prospective and retrospective observational designs were included provided timing of antibiotic delivery was investigated.

Data extraction and assessment of study quality

A data extraction form was developed and piloted. Data extracted included details of objectives, study design, setting, eligibility criteria, participant characteristics, details of timing of antibiotic, other variables investigated and results for the outcomes of interest for the comparison on the timing of delivery of antibiotics. Data were extracted and the quality of studies assessed by one researcher and checked by a second. We planned to use the Cochrane Risk of Bias Tool¹⁹ to assess risk of bias in included RCTs and quasi RCTs and The Newcastle-Ottawa Scale to assess observational study designs.²⁰ Following piloting we found the latter of limited utility for the uncontrolled study designs we included. We therefore used a list of criteria based on a previous review of uncontrolled studies.²¹ Online supplementary appendix 2 provides details of the criteria and online supplementary appendix 3 the results of the risk of bias assessment.

Synthesis

The key aim of the synthesis was to identify gaps in the evidence and identify implications for future research. As specified in the preregistered protocol we did not undertake a meta-analysis due to the absence of RCTs. None of the studies identified were robust study designs to address the research question and were at considerable risk of bias. Any pooled estimate of the available results would therefore be unreliable and potentially misleading. In addition there was considerable heterogeneity within the non-randomised study designs that were identified (eg, in how infection was defined, the diagnostic threshold used, the use of non-validated diagnostic criteria, how the timing of delivery of antibiotics was defined and whether data were gathered retrospectively or prospectively). It is difficult to predict how this bias and heterogeneity would influence the direction of the effect estimate generated by pooling of data. There is conflicting evidence from methodological work on non-randomised study designs whether the effect is overestimated or underestimated when compared with RCTs.²² It is suggested that the main effect is one of uncertainty in the estimate over and above that accounted for in the CIs. Pooling of data would therefore not be justified or reliable therefore a narrative description of the included studies is provided.

RESULTS

Study selection

The searches identified 670 citations, following deduplication. Titles and abstracts were screened for potentially eligible studies and 24 full papers obtained and assessed for inclusion against the eligibility criteria (figure 1). Eight studies were included.^{2 6} ¹² ^{23–27} Three studies^{28–30} were excluded because they were abstracts reporting on the same cohort as an included

study; one because it was a reply to a letter related to an included study³¹ and the remaining 12 studies did not meet at least one inclusion criterion.¹⁵ 16 $^{32-41}$

Overview of included studies

Table 1 provides a summary of the included study characteristics with full data extraction tables available in online supplementary appendix 4. The searches did not identify any RCTs or non-randomised controlled studies. Five were prospective cohorts and three retrospective with a total of 2142 participants. Study size ranged from 89 to 736, though fewer than this were included in individual analyses.

The studies were based in the UK;²⁵ ²⁷ Australia;²⁶ Canada and/or the USA.² ⁶ ¹² ²³ ²⁴ The oldest study was approximately 30 years old with the cohort running from 1983 to 1986¹² the most recent ran from 2010 to 2013.⁶ Three studies restricted the eligible open fractures to the tibia⁶ ²⁶ or radius and/or ulna²³ whereas the remaining studies included a wider range of open fractures. The proportion of participants in studies with Gustilo-Anderson grade I or II ranged from 0%⁶ to 72%.¹²

All of the included studies assessed our primary outcome of interest, deep infection, however, there was considerable variability in how this was defined and one study reported it as part of a composite outcome.² The other most commonly reported outcome was fracture non-union.¹² ²³ ²⁶ None of the studies reported measures of patient function or quality of life and our other outcomes of interest were only reported by single studies (see online supplementary appendix 4), and not explored by time of antibiotic administration. Only one study explicitly investigated the effect of prehospital administration of antibiotics.²

Risk of bias in included studies

The key risk of bias in the included studies arises from none of the studies having a control group or randomised allocation to groups to explore the effect of the variable of interest, time of administration of antibiotic prophylaxis. Table 1 provides details of the risk of bias assessment for individual studies (see online supplementary appendices 2 and 3, for details of criteria and results). The majority of studies used consecutive selection or other methods suggesting that the study sample is likely to be representative, though for many of these studies the completeness of outcome data used in the analyses was not considered adequate. The majority of studies reported data on relevant prognostic and confounding variables, though few reported on all the variables we identified in advance as potentially important to consider. Only one study used a robust measure of deep infection based on our predefined criterion.²⁵ A further study applied the Centers for Disease Control and Prevention (CDC) diagnostic criteria, however, these were not fully applied: when an implant is present as would be the case in all the fractures in this study, the presence of deep infection cannot be determined until 1 year postsurgery according to the CDC criteria.⁶ There were limitations in all of the statistical analyses, either in reporting and/or the actual analyses (see online supplementary appendices 3 and 4). In addition, only the study by Lack et al reported a sample size calculation suggesting that the study was adequately powered to determine whether early administration of antibiotics was associated with lower infection rates.⁶

Synthesis of study results

Table 2 provides a summary of the analytical approach, the overall deep infection rate and the results of analyses exploring the relationship between time of antibiotic delivery and deep

infection rate for each study. The deep infection rate ranged from 5% to 17.5%, though it is unclear whether this variation is related to characteristics of the participants, setting, the time period of the cohort or variation in the definition of infection used. Four of the studies did not undertake a multivariate analysis, either not planned or insufficient sample size, and therefore other confounding variables were not taken into consideration.² ²³ ²⁵ ²⁷

There were limited data available exploring the effect of early administration of antibiotics or delivery in the prehospital setting. Only Thomas et al explicitly investigated administration of prophylactic antibiotics in the prehospital setting.² A further study by Lack et al used retrospective multivariate analysis to explore the effect of antibiotic delivery within 66 min of injury.⁶ These two studies were also the most recent cohorts. Lack et al undertook the most sophisticated analysis, though no information was provided on regression outputs, test statistics or goodness of fit. They reported an independent association between delivery of antibiotic >66 min after injury (early antibiotics) and the odds of deep infection (OR 3.78; 95% CI 1.26 to 14.11) in a sample of patients with type III open tibia fractures.⁶ There was also an independent association between wound coverage within 5 days and the risk of infection. The infection rate with early antibiotics and early wound coverage was 2.8% compared with 7.9% for delayed antibiotics and early wound coverage. Thomas et al reported no statistically significant difference in a composite outcome of fracture site infection or fracture non-union with administration of antibiotic prehospital and on arrival at hospital (risk difference 5.2%, 95% CI -2% to 11%).² This difference may be of clinical significance, however, the results cannot be considered robust due to limitations in the analysis.

Weber *et al*, the largest included study, reported no statistically significant association between developing a deep infection and time of antibiotic administration (adjusted OR 1.0; 95% CI 0.95 to 1.05) in a population with open long bone fractures (66% Gustilo-Anderson grade I or II).²⁴ However, this study did not address the effect of prehospital delivery of antibiotics. Based on the IQR only 25% of participants received their antibiotic within 1 hour 40 min of injury. In the studies by Dellinger *et al*, Zumsteg *et al* and Leonidou *et al* the proportion of patients receiving their antibiotic very early in the prehospital setting was unclear as the cut-off used in the analysis was above and below 3 hours; none found an effect, though the number of events was low and it is unlikely the studies were sufficiently powered (table 2).¹² ²³ ²⁵ Al-Arabi also had a small number of events, the majority of who had received antibiotic within 2 hours of injury.²⁷

DISCUSSION

This systematic review identified no randomised or nonrandomised controlled studies of the effect of the timing of delivery of antibiotics on the risk of developing deep infection following an open fracture. The eight cohort studies that were identified included 2142 participants and the reported rate of deep infection ranged from 5% to 17.5%, although the criteria used to define deep infection were not consistent. All of the studies were at risk of bias in multiple areas and there were limitations in the analyses of all of the studies. One study reported an OR of 3.8 (95% CI 1.3 to 14.1) of an increased risk of deep infection if antibiotics were given >66 min after the time of injury,⁶ however, none of the remaining seven studies demonstrated any statistically significant association between the timing

Review

Table 1 Summar	y of study characteristics					
Publication details, setting, time period of study	Study design Duration of follow-up	Population Eligibility criteria, fracture severity	Number of participants	Details of antibiotic intervention	Definition of deep infection	Quality assessment
Al-Arabi <i>et al²⁷ Setting</i> UK; single general	Prospective cohort Consecutive selection Duration of follow-up	All open fractures, any age. Excluded patients who died within 3 months of injury or transferred to a specialist unit for definitive treatment	N=294 N=237 (248 fractures) included in analyses; n=133 in analysis of	Timing definition Time from injury. Classified as <2, 4, 6, 8, 12 and >12 hours	Diagnosed clinically based on swelling, erythema, discharging wounds and pain, and where possible confirmed with cultures	А=Ү B=N C=Ү D=Ү
hospital (without onsite plastic surgery) <i>Time period</i> April 1999–2005	Until radiological union or non-union was confirmed	Gustilo-Anderson grade I, 31%; II, 22%; IIIB, 26%; IIIB, 21%	timing of antibiotic administration Excluded three due to death within 3 months, 54 transfer to another	<i>Type and regimen</i> Intravenous cefuroxime 1 g (plus 500 mg metronidazole for heavily contaminated		E=Y G=A I= P S= 1
Two separate phases. Data on antibiotics (n=133) from 2000 to 2005 only			centre for definitive treatment	wounds)		N
Dellinger <i>et al</i> ¹² Sett <i>ing</i>	Prospective cohort Consecutive selection	Open fracture of humerus, radius, ulna, femur, tibia or fibula. ≥14 years old, antibiotics within 12 hours of injury, operative debridement within	N=240 (263 fractures)	<i>Timing definition</i> Time from injury. Classified as ≤3 or >3 hours	Involvement of tissues below the muscular fascia (acute if resolved within 4 weeks period after diagnosis after one continuous	A=Y B=Y C=U
Canada and USA; three hospitals	Duration of follow-up >6 months 78% (n=88); <6 months	24 hours and ≥21 days follow-up		Type and regimen	course of antibiotics and operative procedures; chronic if exceeded 4 weeks	D=Y
Time period 1983–1986	(zc=u) %zz	uustino-Anderson grade 1, 25%; II, 47%; IIIA, 19%; IIIB, 5%; IIIC, 5%		Intravenous ceronicia sooium 2 g, cefamandole nafate 2 g or cefazolin with varying follow-up regimens	duration)	F≡N G=N L=P J=P
Enninghorst <i>et al²⁶</i> Setting	Prospective cohort Consecutive selection	<i>Eligibility criteria</i> Age >18, blunt trauma patients with open tibia chaft frortune	N=89	Timing definition Not stated	Infection requiring surgical debridement and long-term intravenous antibiotics based on infortions discose convice convertibation	A=Y B=Y
Jetung New South Wales, Australia; level 1 trauma centre	Duration of follow-up 12 months	sitert nectores Gustilo-Anderson grade 1, 25%; II, 30%; III, 45% (n=40) (IIIA, 20%; IIIB, 24%; IIIC, 1%)		<i>Type and regimen</i> Not stated		C=O D=Y F=N G=Y
<i>Time period</i> 1 January 2007–31 December 2009						Н=Р -
Lack <i>et al</i> ⁶	Retrospective cohort Consecutive selection	Gustilo-Anderson type III open tibia fractures with data for iniury. antibiotic timing and 90 days	N=137	<i>Timing definition</i> Time from iniury. Used ROC	Deep infection within 90 days of injury based on Centers for Disease Control criteria	A=Y B=Y
Setting USA; level 1 trauma	Duration of follow-up 90 days	outcome data (OTA 41, 42 and 43)	Excluded 13 for missing injury classification or antibiotic time; nine	curves to determine the threshold predictive of		C=Y D=N
centre		Gustilo-Anderson grade IIIA, 52%; IIIB/C, 48%	non-reconstructible limb; three no 90 days outcome	infection (≤66 or >66 min)		E=Y F=N
<i>Time period</i> 1 December 2010–31 January 2013				Type and regimen Cefazolin received by 93.4% of participants. Continued for 24 hours postoperatively		G=Y H=Y J=Y
Leonidou <i>et al²⁵</i>	Retrospective cohort Consecutive selection	All open long bone fractures. Patients who died within 3 months of injury or who required transfer	N=212 patients, 220 fractures	Timing definition Classified according to	Horan criteria. Purulent drainage from the deep incision; deep abscess formation;	A=Y B=N
S <i>etting</i> UK; single hospital	<i>Duration of follow-up</i> Until clinical or radiological union or a	to a level 1 trauma centre for definitive treatment were excluded	N=161 (fractures and patients included in analysis)	whether antibiotics were received ≤3 or 3 hours post injury	fascial dehiscence by the infection or during reoperation; deep infection in the presence of a metallic implant around bone	C=N D=N E=N
						Continued

Publication details, setting, time period Study of study Durat	-					
	/ design ion of follow-up	Population Eligibility criteria, fracture severity	Number of participants	Details of antibiotic intervention	Definition of deep infection	Quality assessment
<i>Time period</i> secon 1 January 2006–31 infecti December 2011	dary procedure for non-union or ion was performed	Gustilo-Anderson grade I, 37%: II, 20%: IIIA, 25%; IIIB, 19%	Excluded two due to death within 3 months; 27 transfer to level 1 trauma centre; 17 lost to follow-up; 13 errors in data collection	<i>Type and regimen</i> Cefuroxime and metronidazole until August 2008; coamoxiclav from September 2008		F=Y G=N I=P J=N
Thomas <i>et ai²</i> Prospe Conse Setting USA; eight HEMS <i>Durati</i> , 6 mon	ective cohort ecutive selection ion of follow-up tths	Patients of all ages with a prehospital HEMS diagnosis of open fracture in any extremity being transported by any of the eight participating HEMS	N=138 (132 had confirmed open fractures) N=83 patients (from five services) in analysis	Timing definition Time from injury (assumption made that antibiotic was administered within 5 min of arrival in hospital group)	Any diagnosis of fracture site wound infection (regardless of depth or timing) Not measured as a single outcome. Used composite outcome of fracture site infection or non-union within 6 months	A=Y B=Y C=Y E=Y E=Y
Time period July 2009–June 2010		Gustilo-Anderson grade Not stated	Excluded 55 due to no final outcome data available	<i>Type and regime</i> Intravenous ceftriaxone, 1 g		F=N G=N J=Y
Weber <i>et al²⁴</i> Prospe Conse Setting	ective cohort cutive selection	Skeletal maturity, long bone open fracture (humerus, radius/ulna, femur, tibia/fibula) and presenting for initial surgical debridement	Number of participants N=736 (791 fractures)	<i>Timing definition</i> Unclear	Infection requiring unplanned surgical debridement and/or sustained antibiotic therapy following definitive wound closure	A=Y B=Y C=Y
Canada; three level 1 Durati trauma centres 1 year clinica Time period after s 2001–2009 outcor	<i>ion of follow-up</i> r (telephone interviews) or al follow-up of at least 90 days surgery with a definitive clinical me recorded	Gustilo-Anderson grade I, 29%; III, 37%; IIIA, 12%; IIIC, 1%. No grade available in n=9	N=686 (737 fractures) in analysis Excluded 50 due to missing outcome data	<i>Type and regimen</i> Type I fractures: cefazolin (clindamycin if penicillin allergy) Type II and III: as above +gentamicin Grossly contaminated fractures: as above plus penicillin	(confirmed through clinical records)	D=Y E=Y G=N H=P J=Y
Zumsteg et al ²³ Retros Conse Setting USA; level 1 trauma Durati centre At lea:	spective cohort cutive selection ion of follow-up st 6 months (n=149) (though	≥18 years old with open fracture of the radius and/or ulna (ICD9 codes). Excluded if inadequate information in the medical record, accurate information on time of injury not available, ballistic injury or traumatic amputation	N=296 N=200 included in analysis Excluded: 91 patients with	Timing definition Time from injury. Classified as ≤3 or >3 hours Type and regimen	An infection requiring operative debridement according to patient notes (n=149) or telephone call to patient (n=51)	A=Y C=Y D=N E=N E=N
<i>Time period</i> include 1 January 2006–31 infectio December 2011 teleph	to what show the market more than the first the analysis for deep tend the data could be obtained by none contact, n=51) and the short that the short the sh	Gustilo-Anderson grade I, 24%; II, 24%; III, 52%	response to three attempts at telephone contact	upper and in mecures. 2 g certazolin. Type III: 1 g vancomycin+750 mg levofloxacin Penicillin allergy: 2 g aztreonam or 900 mg clindamycin continued until debridement and 'in general' for 24 hours postoperatively		N=8 A=8 N=1 L=1
Quality assessment criteria (see E=Antibiotic intervention clearly HEMS, helicopter emergency m	e online supplementary appendix 3 y described? F=Accepted measure c edical services; OTA, Orthopaedic Ti	 for further detail: Y=yes, N=no; P=partial; U=unrepo of deep infection? G=Completeness of outcome assess nauma Association: ROC, neceiver operator characteristic 	orted): A=Eligibility criteria adequate? B= iment? H=Relevant prognostic factors repor ic	Sample likely to be representative ted? I=Relevant confounding fact	Participation rate adequate? D=Recruitme ors reported? J=Appropriate measure of variabili	it prospective? y reported?

Review

Tahla 2	Recults from	studies on the	association he	twoon timina (of antibiotic and	deen infection
I able Z	Results IIOIII	studies off the	association be	etween tinning o		deep intection

		Deen	Summary of results for time to antibiotic delivery and deep infection rate			
Study	Analysis	infection rate	Time to antibiotic delivery	% infection rate (n)	Other information	
Al-Arabi <i>et al</i> ²⁷	Univariate linear regression	6.8% (n=9)	<2 hours 2-4 hours 4-6 hours 6-8 hours 8-12 hours >12 hours	9.2% (n=6/65) 2.2% (n=1/45) 0% (n=0/14) 0% (n=0/4) 0% (n=0/3) 100% (n=2/2)		
Dellinger <i>et al</i> ¹²	Univariate analysis followed by stepwise multivariate logistic regression	16% (n=42) (unclear deep or superficial)	≤3 hours >3 hours	16% (n=29/183) 17% (n=8/47)	Time to antibiotic delivery not significantly different between fracture-related infection and no infection groups (2 hours $\pm 1.1^*$ c.f. 2.2 hours $\pm 1.4^*$; p='not significant')	
Enninghorst <i>et al²⁶</i>	Univariate analysis and multivariate logistic regression	17% (n=15)			Mean time 1.2 hours (SE 0.3 hours). The authors state there was no statistically difference between infected and non-infected cases in time to antibiotic delivery (further details not provided)	
Lack <i>et al⁶</i>	ROC curves to determine the threshold predictive of infection for continuous variables. Univariate analysis followed by backward stepwise multivariate logistic regression	17.5% (n=24)	<66 min >66 min	7% (n=4/57) 25% (n=20/80)	Multivariate analysis: Antibiotics delivered >66 min from injury=OR of infection 3.78 (95% CI 1.26 to 14.11) Wound coverage >5 days=OR 7.39 (95% CI 2.54 to 27.04) Immediate antibiotics+early coverage infection rate 2.8% Delayed antibiotics+delayed coverage 14.3%; delayed antibiotics+delayed coverage 40.5%	
Leonidou <i>et al²⁵</i>	Fisher's exact test	4.3% (n=7)	≤3 hours >3 hours	4% (n=5/129) 6.3% (n=2/32)	p=0.62	
Thomas <i>et al</i> ²	Kruskal-Wallis test	Not reported	HEMS group=median 47 min (range 27–109, IQR 37–60) Hospital group=median 77 min (range 33–189, IQR 65–92)	Composite outcome (fracture site infection or non-union): HEMS group 7.7% (n=1/13) Composite outcome fracture site infection or non-union):	Time to delivery significantly different between groups (p=0.001) Risk difference of composite outcome between groups 5.2% (95% Cl –2% to 11%)	
				Hospital group 12.9% (n=9/70)		
Weber <i>et al</i> ²⁴	Univariate logistic regression and multivariate regression	6% (n=46)	No infection group (n=691): Median=3.1 hours (IQR 1.7–7.5) Infection group (n=46): Median=2.6 hours (IQR 1.5–7)		p=0.676 Multivariate regression indicated no significant association between developing a deep infection and time of antibiotic administration (adjusted OR 1.0; 95% CI 0.95 to 1.05)	
Zumsteg <i>et al</i> ²³	Bivariate logistic regression	5% (n=10)	No infection group (n=190): Mean 2.6 hours (SD 2.2) Infection group (n=10): Mean 1.6 hours (SD 0.9)		None of the analysed factors were significantly associated with deep infection	

*Not stated whether SD or SE.

HEMS, helicopter emergency medical services; ROC, receiver operator characteristic.

of delivery of antibiotics despite the presence of large effect sizes. $^{2} \ \,$

There has been no previously published systematic review on this subject. A previous systematic review found that the delivery of antibiotics protected against early infection compared with no antibiotics or placebo in the treatment of open fractures of the lower limb.³⁵ The effect of the timing of delivery of antibiotics was excluded from that review. While there has been recently published evidence to suggest a reduced rate of deep infection in severe (grade III) open fractures of the lower limb,⁶ the lack of a control group in this study, the non-standard application of the CDC criteria to diagnose deep infection and the retrospective restriction to confirmed grade III open fractures substantially limits the generalisability of the findings. The

remaining identified studies suggest there may be a substantial effect size according to the timing of antibiotic delivery² but no statistically significant differences were demonstrated.² ¹² ^{23–27}

The strengths and potential limitations of this systematic review deserve consideration. This is a comprehensive and up to date systematic review of the literature available to date in this area. The review was conducted in accordance with the PRISMA guidelines and registered prospectively in the PROSPERO database (CRD42015016729). The risk of bias and quality assessment were assessed and checked by a second author for all identified studies.

The conclusions of this systematic review are limited by the quality of the evidence available in the literature for review. There were no controlled trials on the effect of the timing of delivery of antibiotics on the risk of deep infection following open fracture and all of the included studies are therefore at risk of substantial bias. Along with the methodological issues, such as the lack of consistency in the definition of deep infection, evaluation of different grades of open fractures and limitations of the analyses identified in the included studies, our ability to reach a firm conclusion regarding the effect of the intervention in this population was limited. As such, the conduct of an RCT to assess the effect of this intervention is indicated.

There is not currently sufficiently robust evidence available to determine whether the timing of delivery of intravenous antibiotics has an effect on the risk of deep infection, patient reported outcome or health-related quality of life following open limb fractures. Further there is no current robust evidence base to support the routine prehospital delivery of antibiotics compared with delivery in hospital for patients with an open fracture of the lower limb. Before the policy and guidance can be changed to support the use of prehospital antibiotics in this population, an RCT should be performed to determine whether there is a benefit in terms of patient outcome that justifies the resource implications of widespread introduction of this practice.

Acknowledgements We would like to thank Kate Lewis-Light, Information Specialist of the Centre for Reviews and Dissemination, University of York for her assistance with the preparation of this systematic review.

Contributors All authors conceived the study. MRW and CMcD designed the study and established the search criteria. MRW and CMcD screened the references, performed the data extraction and quality assessments and synthesis. MRW and CMcD wrote the first draft and all authors contributed and approved the final manuscript. MRW and CMcD made an equal contribution to the study and manuscript.

Competing interests None declared.

Ethics approval This paper represents a systematic review of published work and separate ethical approval was therefore not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement This paper represents a systematic review of published work, the data included in the paper are available in the published works reviewed.

REFERENCES

- Court-Brown CM, Rimmer S, Prakash U, et al. The epidemiology of open long bone fractures. *Injury* 1998;29:529–34.
- 2 Thomas SH, Arthur AO, Howard Z, et al. Helicopter emergency medical services crew administration of antibiotics for open fractures. Air Med J 2013;32:74–9.
- 3 Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 1976;58:453–8.
- 4 Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. *J Trauma* 1984;24:742–6.
- 5 Patzakis MJ, Bains RS, Lee J, et al. Prospective, randomized, double-blind study comparing single-agent antibiotic therapy, ciprofloxacin, to combination antibiotic therapy in open fracture wounds. J Orthop Trauma 2000;14:529–33.

- 6 Lack WD, Karunakar MA, Angerame MR, et al. Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma 2015;29:1–6.
- 7 Lee J. Efficacy of cultures in the management of open fractures. *Clin Orthop Relat Res* 1997;339:71–5.
- 8 Templeman DC, Gulli B, Tsukayama DT, et al. Update on the management of open fractures of the tibial shaft. *Clin Orthop Relat Res* 1998;350:18–25.
- 9 Keating JF, O'Brien PJ, Blachut PA, et al. Locking intramedullary nailing with and without reaming for open fractures of the tibial shaft. A prospective, randomized study. J Bone Joint Surg 1997;79:334–41.
- 10 Ostermann PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br 1995;77:93–7.
- 11 Bednar DA, Parikh J. Effect of time delay from injury to primary management on the incidence of deep infection after open fractures of the lower extremities caused by blunt trauma in adults. J Orthop Trauma 1993;7:532–5.
- 12 Dellinger EP, Miller SD, Wertz MJ, et al. Risk of infection after open fracture of the arm or leg. Arch Surg 1988;123:1320–7.
- 13 Patzakis MJ, Wilkins J, Moore TM. Considerations in reducing the infection rate in open tibial fractures. *Clin Orthop Relat Res* 1983;178:36–41.
- 14 Fernandes Mde C, Peres LR, de Queiroz AC Jr, et al. Open fractures and the incidence of infection in the surgical debridement 6 hours after trauma. Acta Ortop Bras 2015;23:38–42.
- 15 Harley BJ, Beaupre LA, Jones CA, *et al*. The effect of time to definitive treatment on the rate of nonunion and infection in open fractures. *J Orthop Trauma* 2002;16:484–90.
- 16 Pollak AN, Jones AL, Castillo RC, *et al*. The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. *J Bone Joint Surg Am* 2010;92:7–15.
- 17 MacKenzie EJ, Jones AS, Bosse MJ, et al. Health-care costs associated with amputation or reconstruction of a limb-threatening injury. J Bone Joint Surg Am 2007;89:1685–92.
- 18 British Orthopaedic Association, British Association of Plastic, Reconstructive and Aesthetic Surgeons. BOAST 4: the management of severe open lower limb fractures. 2009:1–2. https://www.boa.ac.uk/wp-content/uploads/2014/12/BOAST-4.pdf (accessed 1 Jun 2015).
- 19 Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928–8.
- 20 Wells GA, Shea B, OConnell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011. http://www. ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 1 Jun 2015).
- 21 Llewellyn A, Norman G, Harden M, et al. Interventions for adult Eustachian tube dysfunction: a systematic review. *Health Technol Assess* 2014;18:1–180, v–vi.
- 22 Deeks JJ, Dinnes J, D'Amico R, et al. Evaluating non-randomised intervention studies. *Health Technol Assess* 2003;7:iii–x, 1–173.
- 23 Zumsteg JW, Molina CS, Lee DH, et al. Factors influencing infection rates after open fractures of the radius and/or ulna. J Hand Surg Am 2014;39:956–61.
- 24 Weber D, Dulai SK, Bergman J, et al. Time to initial operative treatment following open fracture does not impact development of deep infection: a prospective cohort study of 736 subjects. J Orthop Trauma 2014;28:613–19.
- 25 Leonidou A, Kiraly Z, Gality H, et al. The effect of the timing of antibiotics and surgical treatment on infection rates in open long-bone fractures: a 6-year prospective study after a change in policy. *Strategies Trauma Limb Reconstr* 2014;9:167–71.
- 26 Enninghorst N, McDougall D, Hunt JJ, et al. Open tibia fractures: timely debridement leaves injury severity as the only determinant of poor outcome. J Trauma 2011;70:352–6; discussion 356–7.
- 27 Al-Arabi YB, Nader M, Hamidian-Jahromi AR, et al. The effect of the timing of antibiotics and surgical treatment on infection rates in open long-bone fractures: a 9-year prospective study from a district general hospital. *Injury* 2007;38:900–5.
- 28 2012 Air Medical Transport Conference Abstracts, AMTC 2012. Air Med J 2012;31. http://www.sciencedirect.com/science/journal/1067991X/31/6
- 29 Hatfield J, Arthur A, Phillips M, et al. Time savings by rapid EMS antibiotic therapy for fractures. Air Med J 2012;31:256.
- 30 Thomas M, Arthur AO, Phillips M, et al. Time savings by rapid EMS antibiotic therapy for fractures: Treat FX. Air Med J 2012;31:172.
- 31 Al-Arabi YB, Nader M, Hamidian-Jahromi AR, et al. Corrigendum to "The effect of the timing of antibiotics and surgical treatment on infection rates in open long-bone fractures: a 9-year prospective study from a district general hospital". [*Injury* 2007;38:900–5] (http://dx.doi.org/10.1016/j.injury.2007.02.043). *Injury* 2008;39:381.
- 32 Bremmer DN, Miller AD, Bookstaver PB, et al. Retrospective review of antibiotic prophylaxis in open lower extremity fractures. *Pharmacotherapy* 2012;32: e292–3.

- 33 Carsenti-Etesse H, Doyon F, Desplaces N, et al. Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis 1999;18:315–23.
- 34 Court-Brown CM, Schmied M, Schmidt M, et al. Factors affecting infection after calcaneal fracture fixation. *Injury* 2009;40:1313–15.
- 35 Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. *Cochrane Database Syst Rev* 2004;(1):CD003764.
- 36 McCaul JK, McCaul MG. Pre-hospital antibiotics for open fractures: is there time? A descriptive study. Afr J Emerg Med 2013;3:S20.
- 37 Murray CK, Hospenthal DR, Kotwal RS, et al. Efficacy of point-of-injury combat antimicrobials. J Trauma 2011;71:S307–13.
- 38 Ovaska MT, Mäkinen TJ, Madanat R, et al. Risk factors for deep surgical site infection following operative treatment of ankle fractures. J Bone Joint Surg Am 2013;95:348–53.
- 39 Obremskey W, Molina C, Collinge C, et al. Current practice in the management of open fractures among Orthopaedic Trauma Surgeons. Part A: initial management. A survey of Orthopaedic Trauma Surgeons. J Orthop Trauma 2014;28:e198–202.
- 40 Ryan SP, Pugliano V. Controversies in initial management of open fractures. *Scand J Surg* 2014;103:132–7.
- 41 Yarrow J, Rahman S, Marsden N, *et al.* Management of open lower limb injuries in South West England and Wales. *Ann R Coll Surg Engl* 2015;97:35–9.

The effect of timing of antibiotic delivery on infection rates related to open limb fractures: a systematic review

Michael R Whitehouse, Catriona McDaid, Michael B Kelly, Christopher G Moran and Matthew L Costa

Emerg Med J 2017 34: 613-620 originally published online September 15, 2016 doi: 10.1136/emermed-2016-205900

Updated information and services can be found at: http://emj.bmj.com/content/34/9/613

These include:

References	This article cites 37 articles, 5 of which you can access for free at: http://emj.bmj.com/content/34/9/613#BIBL				
Email alerting service	Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.				
Topic Collections	Articles on similar topics can be found in the following collections Drugs: infectious diseases (287) Fractures (228) Trauma (1047)				

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/